Riverside Park Monash Drive, Swan Hill

Geotechnical Investigation for Swan Hill Rural City Council

> Report 24C 0693 October 2024

Riverside Park, Monash Drive, Swan Hill

Geotechnical Investigation

for Swan Hill Rural City Council

Revision

Revision	Date	Authorised
24C 0693	9/10/2024	SEH

Distribution (this revision only)

Recipient	Format	Date
GTS	On file	9/10/2024
Swan Hill Rural City Council Attn: Dione Heppell	Email PDF Dione.thompson@swanhill.vic.gov.au	9/10/2024

Head Office / Mail

13 Alstonvale Court,

East Bendigo VIC 3550

Phone 03 5441 4881

Bendigo Laboratory 13 Alstonvale Court, East Bendigo VIC 3550 Phone 03 5441 4881

GEOTECHNICAL | ENVIRONMENTAL | CONSTRUCTION MATERIALS TESTING

Echuca Laboratory Shed 3, 140 Ogilvie Ave, Echuca VIC 3565 Phone 03 5480 0601

Ballarat Laboratory Unit 6, 33 Laidlaw Dr, Delacombe VIC 3356 Phone 03 5335 6494

TABLE OF CONTENTS

1	INT	RODUCTION	4
2	SITE	E AND GEOLOGY	4
	2.1	SITE LOCATION AND GENERAL CONDITIONS	4
	2.2	GEOLOGY	4
3	FIEL	_DWORK	4
4	RES	SULTS	5
	4.1	FIELD RESULTS – SOIL PROFILES	5
	4.2	LABORATORY TEST RESULTS	5
5	ENG	SINEERING RECOMMENDATIONS	6
	5.1	SHALLOW FOOTINGS	6
	5.2	BORED PIERS	7
	5.3	SITE CLASSIFICATION	7
	5.4	EARTHWORKS	7
	5.5	RETAINING WALL	8
6	IMP	ORTANT NOTES ABOUT THIS REPORT	9
7	DIS	CLAIMER	9

APPENDIX

Borehole Locations Engineering Logs Laboratory Test Reports Descriptive Terms

1 INTRODUCTION

Swan Hill Rural City Council commissioned Geotechnical Testing Services (GTS) to undertake a geotechnical investigation for the proposed development along the bank of the Murray River at the Riverside Park off Monash Drive, Swan Hill.

The purpose of the investigation was to assess general subsurface conditions at the site with a view to providing comments and design parameters for the proposed development.

It is understood that the proposed development consists of reconstruction of the existing steps and additions including retaining walls and mooring platform.

2 SITE AND GEOLOGY

2.1 SITE LOCATION AND GENERAL CONDITIONS

The site is located at the Riverside Park off Monash Drive, Swan Hill.

The site has a medium fall to the Murray River and currently occupied by the existing steps. There are few medium to large sized trees within proximity of the proposed development. At the time of the investigation, the surface of the site was moist with none to a moderate coverage of natural grass. There was no visual evidence of surface cracking or natural surface rock.

2.2 GEOLOGY

The Victorian Government's online "Geovic" map shows the site to be underlain by Quaternary aged sedimentary deposits, with this generally confirmed by the field data.

3 FIELDWORK

The geotechnical investigation was conducted on the 19th of August 2024 and involved the drilling of 6 boreholes (BH) by hand auger to termination depths of 2.0 metres. In-situ strength tests in the form of Dynamic Cone Penetrometer (DCP) were conducted within each of the boreholes with the results included on the engineering logs. In addition, samples of material were obtained for further laboratory analysis.

The field investigation was conducted by a technician under the direction of a Geotechnical Engineer, who logged the subsurface profile. The engineering logs are included in the Appendix with their locations shown on the enclosed site plan.

4 RESULTS

4.1 FIELD RESULTS – SOIL PROFILES

The field investigation indicated that the soil profile is relatively uniform across the site below the existing fill and may be summarised as follows:

FILL: Silty Sandy CLAY, medium plasticity, dark brown, fine to coarse sand, trace fine to medium gravel, stiff to very stiff.
To a depth of 0.6 metres *Overlying/Or* (Sandy) Silty CLAY, low to medium/medium plasticity, grey, red/brown, orange/brown, fine to coarse sand when present, stiff to very stiff.
To termination depths.

Reference should be made to the appended engineering logs for a full description of subsurface conditions at each location.

Groundwater inflow was not encountered over the investigated depths. However, due to the proximity to the Murray River and presence of wet material below 1.5 metres, groundwater may have formed in the boreholes if left open long enough. In addition, with the proximity to the Murray River, the depth to groundwater is it is expected to fluctuate.

4.2 LABORATORY TEST RESULTS

Samples retained from the investigation were submitted to the GTS Bendigo laboratory at the completion of the field investigation. The testing consisted of Atterberg Limit and Particle Size Distribution with the results summarised in the following table with full NATA accredited reports in the Appendix.

Table 1: Material Properties

Test Location	BH1 1.1-1.5m	BH2 0.0-0.4m	BH5 1.0-1.5m	BH6 0.0-0.6m
% Passing 19mm Sieve	100	100	100	100
% Passing 2.36mm Sieve	99	100	98	100
% Passing 0.075mm Sieve	86	93	83	74
Liquid Limit (%)	37	36	43	33
Plastic Limit (%)	14	14	20	14
Plasticity Index (%)	23	22	23	19
Linear Shrinkage (%)	10.5	10.5	11.5	8.5
Moisture Content (%)	20.4	20.7	14.4	26.4

5 ENGINEERING RECOMMENDATIONS

At this stage, the proposed development consists of the construction of new steps with retaining walls and mooring platform. As such, the development is expected to utilise shallow footings and/or deep footings (bored piers). Design parameters for the various founding options are included in the following sections.

5.1 SHALLOW FOOTINGS

Based on the results of this investigation, it is recommended that the founding material and minimum depth below existing surface level for shallow footings should be as follows:

(Sandy) Silty CLAY, low to medium/medium plasticity, grey, red/brown, orange/brown, fine to coarse sand when present, stiff to very stiff.
At depths below 0.1 metres in the region of BHs 1 to 3 and BH6 and at depths below 0.6 metres in the region of BHs 4 and 5.

For edge beams, strips and pad footings founded in the natural silty clay material as above there is an allowable bearing pressure of 100kPa available. All footings shall extend a minimum of 100mm into the above founding medium. Blinding concrete (minimum 15MPa strength) may be used to bring footings up to design levels.

Due to the potential for softening of the subsurface from groundwater infiltration from the Murray River, it is recommended that a Geotechnical Engineer inspect any footing excavations to ensure they meet the aforementioned allowable bearing pressures and material types. Furthermore, the steps and mooring are expected to extend into the Murray River. As such, the riverbed/inundated embankments are expected to consist of soft silts/sands which are unsuitable founding material. Footings shall extend through this material and be confirmed to be on natural stiff ground by a Geotechnical Engineer.

5.2 BORED PIERS

Pending the type of construction, bored piers may be preferred. Bored piers shall be founded a minimum of 1.0 metres below surface level and may be proportioned for an allowable end bearing pressure of 150kPa and increasing to 250kPa below 2.0 metres. There is an allowable skin friction of 15kPa commencing from 1.0 metres below surface level.

5.3 SITE CLASSIFICATION

In as far as a site classification in accordance with AS2870-2011 is applicable to a development of this type, the site is classified as **Class P**, due to the evidence of uncontrolled fill material in excess of 0.4 metres and the proximity of trees which may cause abnormal moisture conditions across the site. The reactivity of the material across the site would typically lead to a Class H1-D.

5.4 EARTHWORKS

Suitable material may consist of site won Silty Clay. However, moisture conditioning (wetting up or drying back) will be required to attain proper compaction. Alternately, imported material consisting of Clayey Sand, Clayey Gravel, Sandy Gravel, or low to medium clays may be also used.

It is expected that excavation at the site will be readily achieved using conventional heavy earthmoving machinery in the fill materials and silty clay profile.

If the Silty Clay material is exposed during construction, should it become wet, it will be slippery and difficult to traffic. As such, crushed rock will be required in trafficked areas to ensure access remains available. Alternately, during dry weather, this material will dust up on the surface under traffic and therefore dust control measures such as water truck or crushed rock surfacing will be required.

Temporary excavations in the Silty CLAY material <u>should</u> remain stable in the short term at near vertical, however, due to the proximity to the Murray River it is recommended that it be battered back to a 1:1 (H:V) if unsupported. For any long-term batters in the clay material it is recommended that they be no steeper than 3:1 (H:V) and on completion be topsoiled and vegetated to ensure there stability against erosion. In addition, it is recommended that there are cut off drains along the top of the embankment to minimise surface water runoff down the face as well as drainage at the toe to prevent ponding of water.

It is recommended that heavy machinery maintain a minimum distance of 1.5 metres from the edge of unsupported excavations. This is to minimise the surcharge that the loading may cause and subsequent instability in the unsupported walls.

5.5 RETAINING WALL

At this stage, the type of construction for the retaining walls is unknown. However, all shallow footings (strip) should be founded as per Section 5.1 Shallow Footings. Alternatively, if bored piers are required for the retaining wall they should be founded as per Section 5.2 Bored Piers.

Soil parameters and pressure coefficients (triangular distribution) are provided for the design of retaining walls and estimated in the table below. The values of K_a and K_p allow for friction between the wall structure and the soil. These values should be modified for backfill slopes and surcharges that may apply post construction (e.g. vehicle loadings etc). Lightweight compaction equipment should only be used directly behind the retaining walls.

A drainage system comprising granular backfill and a suitable system of drainage pipes leading water away from the structure should be provided behind the walls. Even with a drainage system, it is recommended that hydrostatic pressures should be included in the design of the wall as a future safeguard.

Based on the subsurface profile the material to be retained will typically be a Silty Clay fill/natural material, with the design parameters outlined below.

DESIGN PARAMETERS									
Soil Parameters / Coefficients	FILL/Natural: Silty CLAY								
Active earth pressure coefficient, Ka	0.5								
Passive earth pressure coefficient, K_p	FILL: Not recommended Natural: 2.0								
At rest earth pressure coefficient, K_0	0.95								
Unit Weight, γ	18kN/m ³								
Cohesion, c	FILL: 25 kPa Natural: 50 kPa								
Friction Angle, ϕ	0°								

The friction angle for the clay material assumes it is saturated (zero air voids) and is a conservative assumption.

It is noted that any imported backfill material for the retaining wall may need to be assessed to determine the appropriate design parameters. Parameters for site won fill placed and compacted shall be as the Silty Clay as above.

Refer to Section 5.4 Earthworks for temporary and long-term batters in the material.

6 IMPORTANT NOTES ABOUT THIS REPORT

The results from this investigation relate to the specified sites labelled throughout this document, and hence the information obtained may need to be extrapolated to the rest of the designated area. While care has been taken throughout this investigation, soil conditions can vary between each individual test site and at depths greater than that drilled during this investigation. Hence, if variations from this report are found during excavations/construction then Geotechnical Testing Services should be notified so it can be assessed and appropriate advice provided.

The soil colours provided in the borelogs attached may vary with soil moisture content and individual interpretation, therefore colour alone should not be used to identify these soils.

Strength characteristics of soils often exhibit a large variation between wet and dry conditions. Soil characteristics of a soil profile are given on the soil conditions at the time of the investigation.

7 DISCLAIMER

This investigation has been carried out in goodwill and under the instructions of Swan Hill Rural City Council. The investigation has been undertaken with the care and skill of competent personnel as defined within Geotechnical Testing Services quality system. It is not a comprehensive investigation but a guide to the conditions throughout the designated area.

This document has been prepared for Swan Hill Rural City Council and hence no responsibility or liability is being accepted to any third party, where any part of the report is used in either isolation or without consideration of the whole document. This document is not appropriate where there has been a significant change in the project or either for the specific needs of the reader.

Please, don't hesitate to contact the undersigned, if you require any further information or assistance.

Prepared by

anterior

Corey Palmer BE (Hons) GradIEAust Graduate Geotechnical Engineer

Reviewed by

Humpton

Shane Hampton BE (Hons), MIEAust Principal Geotechnical Engineer

APPENDIX

APPROXIMATE LOCATIONS NOT TO SCALE

GEOTECHNICAL TESTING SERVICES

GTS REF: 24C 0693 CLIENT REF:

DRAWN BY: VC DATE: 4 SEPTEMBER 2024

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881 **Geotechnical Log - Borehole**

	m) : 0.0 evation : Not	0.00 Driller Supplier : 0.00 Logged By : Not Surveyed Reviewed By :		: GF :	C P L	ob Numb lient roject ocation	: Sv : Pr : Me	wan Hill Ru oposed ret	ral City Cour aining wall v e, Swan Hill	vall and moor	ing platform			
Total Depth : 2 m BGL					Date	: 19/08/2024	L	oc Comn	nent :					
Denth (m)	Soil Origin	Granhie Loo	Classicond Code	classification code		Material Description		Moisture	Weathering	Consistency	DCP	Testing PP (kPa)	SPT	Remark
_	Natu	ral	CL		Silty CLAY CL-(brown, moist.	CI: stiff, low to mediun	n plasticity, grey red	М		St	3 5 5	-		
											5	1		
0.4	INatu	ral	c			stiff to very stiff, mediu e fine grained sand, n		M		St-VSt	6			
											6			
											8	-		
-											12	-		
											12	-		
-											16			
1.1	LNatu	ral	CL	C I	Silty CLAY CL-0 plasticity, grey,	CI: very stiff to hard, lo trace fine to coarse gi	ow to medium rained sand, wet.	w		VSt-H	16	-		
-											12	-		
1.5	5Natu	ral	C			very stiff, medium plas e grained sand, wet.	sticity, grey orange	w		VSt				
-														
						BH 1 Terminated at 2m								

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

M sting (m) rthing (m) pund Elevat	: : 0.00 : 0.00 tion : Not Surve	eved		Drill Rig : Hand Auger (Dia 75mm) Driller Supplier : Logged By : GF Reviewed By :	Job Number Client Project Location	: Sv : Pr	van Hill Rui oposed ret	al City Cour aining wall v a, Swan Hill	vall and moori	ng platform	
al Depth	: 2 m BGL	Jea		Date : 19/08/2024		Loc Comment :		., owait thin			
Depth (m)	Soil Origin	Graphic Log	Classification Code	Material Description	Moisture	Weathering	Consistency	DCP	Testing PP (kPa)	SPT	Remarks
-	Natural		GL-CC I	Silty CLAY CL-CI: stiff to very stiff, low to medium plasticity, grey orange brown, moist.	M		St-VSt	4 5 4 7 9 11 14			
-	Natural		CL-C I	Silty CLAY CL-CI: very stiff to hard, low to medium plasticity, grey orange brown, trace fine to coarse grained sand, wet to moist.	y W-M		VSt-H	20+	-		
-	Natural		CI	Sandy CLAY CI: very stiff, medium plasticity, grey, grained sand, wet.	fine W		VSt				

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

Intering 0 ::00 Logge by :07 Project Interpated memory and walk and motion justices Text Device With the Work Withe Work With the Work Withe Work With the Work Withe	M sting (m)	: : 0.00			Drill Rig Driller Supplier	: Hand Auger (Dia 75mm) :		ob Numbo lient			ral City Cou	ncil		
i i			eved										ing platform	
Image: Natural line Statural line CLC Sitty CLAY CL-Cl: very stiff, low to medium plasticity. W V VI VI<											,			
Natural CL Slity to sandy CLAY CL: stiff to very stiff, medium grained sand, moist. M Sk-VSI 2 6 5 5 5 5 5 5 8 4 4 4 4 4 5 5 9 4<	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Moisture	Weathering	Consistency	DCP		SPT	Remark
Natural CL-C Silty CLAY CL-CI: very stiff, low to medium plasticity, W VSt		Natural			plasticity, pale			M		St-VSt	5 5 8 11 11 13 15 14 16 15			
	- 1.6	Natural			Silty CLAY CL- pale brown gre	CI: very stiff, low to medium pla y, trace fine to coarse grained s	asticity, sand, wet.	w		VSt				

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

UTM Easting (m) Northing (m)	: : 0.00 : 0.00		Drill Rig Driller Supplier Logged By	: Hand Auger (Dia 75mm) : : GF	Job Numbe Client Project	: Sv	van Hill Rur	al City Cour aining wall v	ncil vall and moori	ng platform	
	tion : Not Surve	yed	Reviewed By	:	Location		onash Drive	, Swan Hill '	VIC		
Total Depth	: 2 m BGL		Date	: 19/08/2024	Loc Comme	ent :					
Water Depth (m)	Soil Origin	Graphic Log Classification Code		Material Description	Moisture	Weathering	Consistency	DCP	Testing PP (kPa)	SPT	Remarks
- 0.6	Fill	CI	Silty CLAY CI:	CLAY CI: medium plasticity, da , fine to coarse grained sand, ad gravel, moist. stiff to very stiff, medium plasti arse grained sand, moist.	race fine		St-VSt St-VSt	6 12 8 6 5 5 5 5 8			
-								13 13 12 12 10			

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

Geotechnical Log - Borehole

methy i.i.do i.g.edd i		cil	al City Coun			b Number ent		Drill Rig : Hand Auger (Dia 75mm) Driller Supplier :			: : 0.00	l ing (m)
Total index is and index	platform											
und u		'IC	e, Swan Hill V	onash Drive					I			
uo uo <thuo< th=""> uo uo <thu< th=""><th></th><th>T</th><th></th><th>,</th><th>∍nt:</th><th>c Comme</th><th>Lo</th><th>Date : 19/08/2024</th><th></th><th></th><th>: 2 m BGL</th><th>I Depth</th></thu<></thuo<>		T		,	∍nt:	c Comme	Lo	Date : 19/08/2024			: 2 m BGL	I Depth
Fill CI Sitty to sandy CLAY CI: medium plasticity, dark brown, stiff to very stiff, fine to medium grained sand, trace fine to coarse sized gravel, moist. M St-VSt 8 - - - - 8 8 8 8 - - - - 8 8 8 8 8 - - - - - 8 10 10 6 10 6 6 6 6 6 6 6 6 10 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 12 12 15 12 15		Testing							ode			
0.6 Natural CI Sitly CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M St-VSt 5 9 12 15 12 15	SPT Remarks	PP (kPa)	DCP	Consistency	Weathering	Moisture		Material Description	Classification C	Graphic Log	Soil Origin	Depth (m)
0.5 Natural CI Silty CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M SI-VSt 5 - Image: Classic coarse grained sand, moist. Image: Classic coarse grained sand, moist. M Image: Classic coarse grained sand, moist.			8	St-VSt		М	brown, ace fine	stiff to very stiff, fine to medium grained san	CI		Fill	
0.6 CI Silty CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M St-VSt 5 - Natural CI Silty CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M St-VSt 5 - Image: Coarse grained sand, moist. Image: Coarse grain			8	-								
0.6 Natural CI Silty CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M St-VSt 5 - Image: St-VSt image: St-				-								-
0.6 Natural CI Silty CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M St-VSt 5 9 12 15 15												
Natural CI Silty CLAY CI: stiff to very stiff, medium plasticity, grey, with fine to coarse grained sand, moist. M St-VSt 5 - <												
			5	St-VSt		м	y, grey,		СІ		Natural	0.6_
			9									-
			12									
			15									
			13	-								
BH 5 Terminated at 2m					ĺ							

13 Alstonvale Court East Bendigo VIC 3550 Phone: 03 5441 4881

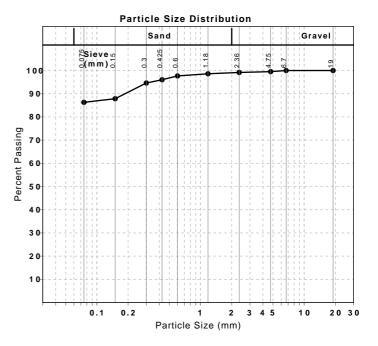
Geotechnical Log - Borehole

M sting		: : 0.00			Drill Rig Driller Supplier	: Hand Auger (Dia 75mm) :	Clier	nt	: Sw		al City Cou		na ni-ti-	
	g (m) I Eleva	: 0.00 ation : Not Surve	have		Logged By Reviewed By	: GF :	Proje Loca				aining wall v e, Swan Hill	vall and moori VIC	ng platform	
	epth	: 2 m BGL	Ju		Date	· : 19/08/2024		Comme		nuon Drive	., 011111			
				Ð								Testing		
	Depth (m)	Soil Origin	Graphic Log	Classification Code		Material Description		Moisture	Weathering	Consistency	DCP	PP (kPa)	SPT	Remark
		Natural		CL-C I		CI: stiff to very stiff, low to mediun with fine grained sand, moist.	n	М		St-VSt	3			
											5			
-										-	5	_		
										-	6	-		
-										-	8	_		
										-	10	-		
											14	-		
											14			
-	_									-	14	_		
											15	-		
											15	-		
	1.7_													
		Natural		CL	Silty to sandy C brown pale gre	CLAY CL: very stiff, low plasticity, y, fine to medium grained sand, v	P	W		VSt				

Report Number:	P242787-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court, East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242787
Project Name:	Proposed Steps and Retaining Walls
Project Location:	Monash Drive, Swan Hill
Client Reference:	24C 0693
Work Request:	16154
Sample Number:	B24-16154A
Date Sampled:	19/08/2024
Dates Tested:	30/08/2024 - 09/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH1 , Depth: 1.1-1.5m
Material:	Refer to Borehole Logs

Sieve	Passed %	Passin Limits	g	Retained %	Retair Limits	
19 mm	100			0		
6.7 mm	100			0		
4.75 mm	100			0		
2.36 mm	99			0		
1.18 mm	99			1		
0.6 mm	98			1		
0.425 mm	96			2		
0.3 mm	95			1		
0.15 mm	88			7		
0.075 mm	86			2		
Atterberg Lim	it (AS1289 3. ⁻	1.2 & 3.2	.1 & 3.3	3.1)	Min	Max
Sample Histo				ven Dried		
Preparation N	/lethod		Dry Sieve			
Liquid Limit (9	%)			37		
Plastic Limit (%)			14		
Plasticity Inc	Plasticity Index (%)			23		
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Condition Determined By		ined By	AS	1289.3.1.2		
Linear Shrinkage (%)						
	age (%)			10.5		

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:


Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A WORLD RECOGNISED ACCREDITATION

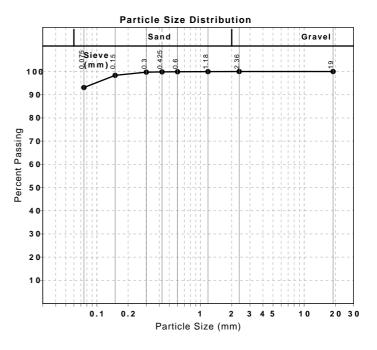
NATA

Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Report Number: Issue Number: Date Issued:	P242787-1 1 09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court, East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242787
Project Name:	Proposed Steps and Retaining Walls
Project Location:	Monash Drive, Swan Hill
Client Reference:	24C 0693
Work Request:	16154
Sample Number:	B24-16154B
Date Sampled:	19/08/2024
Dates Tested:	30/08/2024 - 06/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH2 (0.0-0.4m)
Material:	Refer to Borehole Logs

Sieve	Passed %	Passin Limits	g	Retained %	Retair Limits	
19 mm	100			0		
2.36 mm	100			0		
1.18 mm	100			0		
0.6 mm	100			0		
0.425 mm	100			0		
0.3 mm	100			0		
0.15 mm	98			1		
0.075 mm	93			5		
Atterberg Limit (AS1289 3.1.2 & 3.2.1 & 3.3.1)					Min	Max
Sample Histo	ory		0	ven Dried		
Preparation Method						
Preparation N	/lethod		D	Dry Sieve		
Preparation N Liquid Limit (C	Ory Sieve 36		
	%)					
Liquid Limit (%) (%)			36		
Liquid Limit (Plastic Limit (Plasticity Ind	%) (%)	3.4.1)		36 14	Min	Max
Liquid Limit (Plastic Limit (Plasticity Ind Linear Shrink	%) (%) dex (%)	,		36 14	Min	Max
Liquid Limit (Plastic Limit (Plasticity Ind Linear Shrink	%) (%) d ex (%) age (AS1289 idition Determ	,		36 14 22	Min	Max

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:


Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

NATA

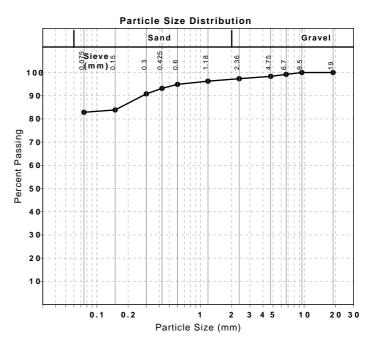
Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Report Number:	P242787-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court, East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242787
Project Name:	Proposed Steps and Retaining Walls
Project Location:	Monash Drive, Swan Hill
Client Reference:	24C 0693
Work Request:	16154
Sample Number:	B24-16154C
Date Sampled:	19/08/2024
Dates Tested:	30/08/2024 - 09/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH5 , Depth: 1.0-1.5m
Material:	Refer to Borehole Logs

Particle Size Sieve	Distribution (A Passed %	S1289 3 Passin Limits	,	Retained %	Retai Limits	
19 mm	100			0		
9.5 mm	100			0		
6.7 mm	99			1		
4.75 mm	98			1		
2.36 mm	97			1		
1.18 mm	96			1		
0.6 mm	95			1		
0.425 mm	93			2		
0.3 mm	91			2		
0.15 mm	84			7		
0.075 mm	83			1		
Atterberg Lim	it (AS1289 3. ⁻	1.2 & 3.2	.1 & 3.	3.1)	Min	Max
Sample Histo	ry		0	ven Dried		
Preparation N	/lethod		D	Dry Sieve		_
Liquid Limit (%)			43		
Plastic Limit (%)		20			
Plasticity Inc	lex (%)			23		
Linear Shrink	age (AS1289	3.4.1)			Min	Max
Moisture Con	dition Determi	ined By	AS	1289.3.1.2		
Linear Shrink	age (%)			11.5		

Cracking

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:


Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

NATA

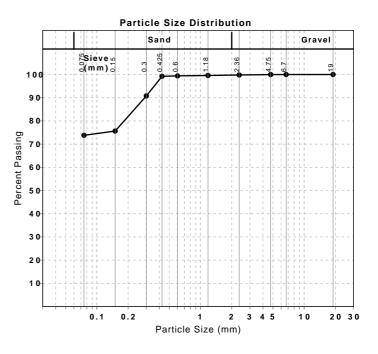
Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Cracking Crumbling Curling

Report Number: Issue Number:	P242787-1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court, East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242787
Project Name:	Proposed Steps and Retaining Walls
Project Location:	Monash Drive, Swan Hill
Client Reference:	24C 0693
Work Request:	16154
Sample Number:	B24-16154D
Date Sampled:	19/08/2024
Dates Tested:	30/08/2024 - 09/09/2024
Sampling Method:	Sampled by Client
	The results apply to the sample as received
Sample Location:	BH6 (0.0-0.6m)
Material:	Refer to Borehole Logs

Particle Size Sieve	Distribution (A Passed %	Passin Limits	,	Retained %	Retair Limits	ned
19 mm	100			0		
6.7 mm	100			0		
4.75 mm	100			0		
2.36 mm	100			0		
1.18 mm	100			0		
0.6 mm	99			0		
0.425 mm	99			0		
0.3 mm	91			8		
0.15 mm	76			15		
0.075 mm	74			2		
Atterberg Lim	it (AS1289 3.1	.2 & 3.2	.1 & 3.3	3.1)	Min	Max
Sample Histo				ven Dried		
Preparation N	/lethod		Dry Sieve			
Liquid Limit (%)		33			
Plastic Limit (%)		14				
Plastic Limit (%)			14		
Plastic Limit (Plasticity Inc				14 19		
Plasticity Inc		3.4.1)			Min	Max
Plasticity Inc	lex (%)		AS		Min	Max
Plasticity Inc	dex (%) age (AS1289 dition Determi		AS	19	Min	Max

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:


Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

A WORLD RECOGNISED ACCREDITATION

NATA

Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Report Number:	P242787-1
Issue Number:	1
Date Issued:	09/09/2024
Client:	GTS Consultancy Department
	13 Alstonvale Court, East Bendigo VIC 3550
Contact:	Shane Hampton
Project Number:	P242787
Project Name:	Proposed Steps and Retaining Walls
Project Location:	Monash Drive, Swan Hill
Client Reference:	24C 0693
Work Request:	16154
Dates Tested:	30/08/2024 - 30/08/2024
Location:	Material Investigation - Monash Drive, Swan Hill - 24C 0693

Geotechnical Testing Services (Southern) Bendigo Soil and Concrete Testing Laboratory 13 Alstonvale Court East Bendigo VIC 3550 Phone:

Email: jamess@gts.com.au

Accredited for compliance with ISO/IEC 17025 - Testing

WORLD RECOGNISED ACCREDITATION

Approved Signatory: James Smith CMT Laboratory Supervisor NATA Accredited Laboratory Number: 19506

Moisture Content AS 1289 2.1.1						
Sample Number	Sample Location	Moisture Content (%)	Min	Max	Material	
B24-16154A	BH1 , Depth: 1.1- 1.5m	20.4 %	**	**	Refer to Borehole Logs	
B24-16154C	BH5 , Depth: 1.0- 1.5m	14.4 %	**	**	Refer to Borehole Logs	

DESCRIPTIVE TERMS BOREHOLE/EXCAVATION LOG

Classification Symbol & Soil Name

Classification of material and its description is based on the Unified Classification System as referenced in AS1726 – 1993 Geotechnical Site Investigations, Appendix A. A summary of the more common terms is included within.

Particle Size Descriptive Terms

Name	Subdivision	Size
Boulders		>200mm
Cobbles		63 – 200mm
Gravel	Coarse	20 – 63mm
	Medium	6 – 20mm
	Fine	2.36 – 6mm
Sand	Coarse	0.6 – 2.36mm
	Medium	200 – 600 micron
	Fine	75 – 200 micron
Silt		2 – 75 micron
Clay		< 2 micron

Consistency of Cohesive Soils

Term	Undrained shear strength, s _u (kPa)	Field Guide
Very Soft (VS)	<12	A finger can be pushed well into the soil with little effort
Soft (S)	12 – 25	A finger can be pushed into the soil to about 25mm depth
Firm (F)	25 – 50	The soil can be indented about 5mm with the thumb
Stiff (St)	50 – 100	The surface of the soil can be indented with the thumb
Very Stiff (VSt)	100 – 200	The surface of the soil can be indented by thumb nail
Hard (H)	>200	The surface of the soil can be marked only with the thumbnail
Friable (F)	-	Crumbles or powders when scraped by thumbnail

Method

S	Auger Screwing	W	Washboring
D	Auger Drilling	N	Natural Exposure
R	Roller/tricone	E	Existing Excavation

Water

*	Not observed
\leq	Observed water level (date shown)

- Observed water inflow
- Observed water outflow
- R Refer to report for details

Structures, Additional Observations

PP	Pocket Penetrometer test (kPa)
DCP	Dynamic Cone Penetrometer test
	(blows/100mm)

Density of Granular Soils

Term	Density Index (%)	
Very Loose (VL)	< 15	
Loose (L)	15 – 35	
Medium Dense (MD)	35 – 65	
Dense (D)	65 – 85	
Very Dense (VD)	> 85	

Minor Components

Term	Field Guide	Proportion of Minor Component In:
Trace of	Presence just detectable by feel or eye	Coarse grained soils: <5% Fine grained soils: <15%
Some	Presence easily detectable by feel or eye	Coarse grained soils: 5-12% Fine grained soils: 15-30%

Moisture Condition

Dry (D)	Looks & feels dry. Cohesive soils are usually hard, powdery or friable. Granular soils run freely through the hand.
Moist (M)	Soil feels cool and darkened in colour. Cohesive

- soils can be moulded. Granular soils tend to cohere. Free water does not form.
- Wet (W) As for moist, but with free water forming on hands when remoulded.

Support

в	Blade/bucket	*	Nil
С	Coring	С	Casing
н	Hammer Drill	м	Mud/polymer

Notes, Samples, Tests

U63 Undisturbed sample, 63mm diameter

D Disturbed sample
N* Standard Penetration Test, (*) Sample

Figure = results

Surface

	Known boundary
	Probably boundary
-?-?-?-?-?-	Possible boundary